Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin.
نویسندگان
چکیده
Astrocytes are plastic cells that play key roles in brain physiology and pathology, including via their glutamate transporters, excitatory amino acid transporter (EAAT)1 and EAAT2, maintaining low extracellular glutamate concentrations and protecting against excitotoxic neuronal injury. Alterations in cell surface expression of EAATs and astrocytic cytoskeleton are important for regulating transporter activity. This study employed the actions of rottlerin, to interrogate the regulation of EAAT activity, expression and localization, and interfaces with Na(+)/K(+)-ATPase and astrocytic morphology. EAAT activity and expression were determined in primary cultures of mouse astrocytes in the presence of and after rottlerin removal, with or without trafficking inhibitors, using uptake ([(3)H]d-aspartate, (86)Rb(+)) and molecular analyses. Astrocytic morphology and EAAT localization were investigated using Western blotting and immunocytochemistry, in concert with image analysis of glial fibrillary acidic protein, F-actin and EAAT1/2. Rottlerin induced a time-dependent inhibition of glutamate transport (Vmax). Rapid changes in cytoskeletal arrangement were observed and immunoblotting revealed increases in EAAT2 total and cell surface expression, despite reduced EAAT activity. Rottlerin-induced inhibition was reversible and its rate was increased by monensin co-treatment. Rottlerin inhibited, while monensin stimulated Na(+)/K(+)-ATPase. Removal of rottlerin rapidly elevated Na(+)/K(+)-ATPase activity beyond control levels, while co-treatment with monensin failed to stimulate the Na(+)/K(+)-ATPase. These data reveal inhibition of EAAT activity by rottlerin is not associated with loss of EAATs at the cell surface, but rather linked to cytoskeletal rearrangement, and inhibition of the Na(+)/K(+)-ATPase. Rapid recovery of Na(+)/K(+)-ATPase activity, and subsequent restoration of glutamate uptake indicates that astrocytic morphology and EAAT activity are co-regulated by a tightly coupled, homeostatic relationship between l-glutamate uptake, the electrochemical gradient and the activity of the Na(+)/K(+)-ATPase.
منابع مشابه
Glutamate transporter coupling to Na,K-ATPase.
Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPa...
متن کاملCorrection: Role of Na,K-ATPase α1 and α2 Isoforms in the Support of Astrocyte Glutamate Uptake
Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+) co-transporters. This transport is driven by the transmembrane Na(+) gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In th...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملA new concept affecting restoration of inflammation-reactive astrocytes
Long-lasting pain may partly be a consequence of ongoing neuroinflammation, in which astrocytes play a significant role. Following noxious stimuli, increased inflammatory receptor activity, influences in Na(+)/K(+)-ATPase activity and actin filament organization occur within the central nervous system. In astrocytes, the Ca(2+) signaling system, Na(+) transporters, cytoskeleton, and release of ...
متن کاملENZYME INHIBITION BY HERBAL MOLLUSCICIDES IN THE NERVOUS TISSUE OF THE SNAIL LYMNAEA ACUMINATA
The effect of Annona squamosa, Lawsonia inermis and their combination with other herbal molluscicides were studied on different enzyme activity in the nervous tissue of Lymnaea acuminata. Twenty-Four hour in vivo exposure to 40% and 80% of 24 h LC50 of plant derived molluscicides and their combination with other molluscicides such as Cedrus deodara, Azadirachta indica oil, Allium sativum, Polia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 254 شماره
صفحات -
تاریخ انتشار 2013